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The multipole interaction Hamiltonian for time dependent fields 

L D  Barron and  C G  Gray? 
Department of Theoretical Chemistry, University Chemical Laboratory, Lensfield Road, 
Cambridge CB2 1 EW, UK 

MS received 18 July 1972 

Abstract. By a suitable choice of gauge, it is shown that the conventional Hamiltonian for the 
interaction of a system with time dependent electromagnetic fields can be written in multi- 
pole form without performing a canonical transformation. 

1. Introduction 

The Hamiltonian for the interaction of a single classical spinless particle of charge e, 
mass m, position Y, and canonical momentum p with a given electromagnetic field 
characterized by a vector potential A and a scalar potential 4 is (in SI) 

e e' 
m 2m 

~ ( t )  = - - p  . A(Y, t )  +-A(Y, t12 + e&u, t ) .  

Our  final result can be immediately quantized and  extended to  any number of particles: 
the inclusion of spin will be discussed elsewhere. It is often convenient to represent 
the interaction as a series of terms in which the electric and  magnetic multipoles are 
coupled with the electric and  magnetic fields and their gradients. When the fields are 
static, the transformation of (1) into multipole form is elementary ; but when the fields 
are dynamic, the transformation is more difficult, and  all previous treatments involve 
a canonical transformation of the Hamiltonian into a form which is equivalent to, 
but not equal to, (1). These transformations are performed either directly on the 
Hamiltonian, o r  indirectly via the corresponding Lagrangian by subtraction of a total 
time derivative. Complications a re  introduced and  the simplicity of the static situation 
is lost. 

We show that, with a more judicious choice of gauge. the interaction ( 1 )  is simply 
equal to the multipole Hamiltonian. This is accomplished without a canonical trans- 
formation and is almost a s  simple a s  the static case. 

The original treatment of the dynamic case is due to  Goeppert-Mayer (1931): who 
derived the electric dipole term by subtracting a n  appropriate total time derivative from 
the Lagrangian. This derivation was rediscovered by Richards (1948). The extension 
of this method to include the magnetic dipole and  electric quadrupole terms is compli- 
cated, and  was given by Shail(l964). Fiutak (1963) has attempted to  derive the multipole 
form by a canonical transformation of the Hamiltonian ; unfortunately his treatment 
contains some errors. Finally, we mention the discussions by Power and Zienau (1959), 
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Fiutak (1963), McLachlan (1963), Shail (1964), Atkins and Woolley (1970), and Woolley 
(1971), who derived the multipole interactions by considering the radiation field as a 
dynamical system in interaction with a system of particles, rather than as a prescribed 
field. These treatments are more involved, but lead to additional results; for example, 
self-energies and binding energies. 

2. Static fields 

We first review the static case since this guides our explicit choice of potentials in the 
dynamic case. Here the electric and magnetic fields are determined by and A respec- 
tively : 

E(Y) = -V+(V) (2 )  
B(r) = v x A ( r ) .  (3) 

+(v)  = ~ , + u . ( V + ) , + t n , : ( V V ~ ) , + . . . ,  (4) 

e& = e + o - p . E , - Q : ( V E ) , + . . . .  ( 5 )  

By expanding +(v)  in a Taylor series about the origin. 

the static electric multipole interactions are generated : 

where p = er is the electric dipole moment and Q = +err is the electric quadrupole 
moment (Q is often replaced by the traceless form Q-ier’l, which is legitimate in 
source-free regions since V . E = 0). The origin is chosen to  be the nucleus of an atomic 
charge distribution, which is assumed for simplicity to be infinitely massive compared to 
the electron. From the expansion 

(6) A ( r )  = +Bo x r + f r  . (VB), x r’+ , . . , 
which leads to the correct Taylor expansion for B(v) using (3), the static magnetic multi- 
pole interactions are derived : 

e 
m - - p . A  = - m . B , + . . . ,  (7) 

where m = (e/2m)r x p  is the magnetic dipole moment. The diamagnetic interaction is 

Thus (1) can be written directly in multipole form when the fields are static. 

3. Dynamic fields 

If the fields are dynamic, B is still determined by A alone, whereas E is determined by 
both A and d :  

E(v, t )  = - V ~ ( V >  t )  - A(v, t )  

B(r, t )  = V x A(v, t ) .  
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There is gauge freedom in the choice of 4 and A .  We make an explicit choice with the 
Taylor series representations 

4 ( ~ , t )  = - r . E , ( t ) - + r ~ : ( V E ( t ) ) , + . .  . (1 1) 

A(Y, t )  = + B o ( t ) x v + ~ Y . ( V B ( t ) ) , x Y + . . . ,  (12) 

E(v, t )  = E,(t)  + Y . (VE(t)) ,  + , . . (13) 
B(v, t )  = B,(t) + r . (VBit)) ,  + . . . . (14) 

(For simplicity we have not included 4,  in (1 1) : this can be added at the end if required, 
but in any case the corresponding energy will vanish if a neutral collection of charges 
is considered.) I t  is easy to verify that (11) and (12) lead to (13) and (14). The constant 
terms E ,  and Bo are obvious. To see how the term Y .  (VE(t ) ) ,  in (13) arises, we use the 
relations 

which satisfy (9) and (IO) if E and B can be Taylor expanded : 

fv{YY:(VE(t)),} = Y .  (VE(t))S, (15) 
1 3  1 
2 2t 2 
- -(Bo@) x v )  = -( - v x E(t ) ) ,  x I' = Y .  (VE(t));: 

where T S  and T A  denote the symmetric and antisymmetric parts of a tensor T = T S  i 
and use has been made of the Maxwell equation V x E = - B. Substituting (1 1) and 
in (1 j leads to the dynamic multipole interaction Hamiltonian 

V ( t )  = -p. E , ( t ) - Q : ( V E ( t ) ) , - m .  B , ( t ) + .  . . 
plus the dynamic diamagnetic terms 

e2 
--(rr 

8m 
-r2l):Bo(t)Bo(t)+.  . . . 

Notice that the gauge implied by the choice (11) and (12) does not correspond to the 
Coulomb gauge (V . A = 0) or the Lorentz gauge (V . A = - 4). 
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